Langsung ke konten utama

alkaloid



I.         PEMBAHASAN

A.  Pengertian Senyawa Alkaloid
Alkaloid adalah senyawa organik yang terdapat di alam bersifat basa atau alkali dan sifat basa ini disebabkan karena adanya atom N (Nitrogen) dalam molekul senyawa tersebut dalam struktur lingkar heterosiklik atau aromatis, dan dalam dosis kecil dapat memberikan efek farmakologis pada manusia dan hewan.
Alkaloid juga adalah suatu golongan senyawa organik yang terbanyak ditemukan di alam. Hampir seluruh senyawa alkaloida berasal dari tumbuh-tumbuhan dan tersebar luas dalam berbagai jenis tumbuhan. Semua alkaloida mengandung paling sedikit satu atom nitrogen.
Hampir semua alkaloida yang ditemukan di alam mempunyai keaktifan biologis tertentu, ada yang sangat beracun tetapi ada pula yang sangat berguna dalam pengobatan. Misalnya kuinin, morfin dan stiknin adalah alkaloida yang terkenal dan mempunyai efek sifiologis dan fisikologis. Alkaloida dapat ditemukan dalam berbagai bagian tumbuhan seperti biji, daun, ranting dan kulit batang. Alkaloida umunya ditemukan dalam kadar yang kecil dan harus dipisahkan dari campuran senyawa yang rumit yang berasal dari jaringan tumbuhan.


B.  Klasifikasi Alkaloida
Alkaloid biasanya diklasifikasikan menurut kesamaan sumber asal molekulnya (precursors), didasari dengan metabolisme pathway (metabolic pathway) yang dipakai untuk membentuk molekul itu. Kalau biosintesis dari sebuah alkaloid tidak diketahui, alkaloid digolongkan menurut nama senyawanya, termasuk nama senyawa yang tidak mengandung nitrogen (karena struktur molekulnya terdapat dalam produk akhir. sebagai contoh: alkaloid opium kadang disebut "phenanthrenes"), atau menurut nama tumbuhan atau binatang dimana senyawa itu diisolasi. Jika setelah alkaloid itu dikaji, penggolongan sebuah alkaloid diubah menurut hasil pengkajian itu, biasanya mengambil nama amine penting-secara-biologi yang mencolok dalam proses sintesisnya.
Klasifikasi  alkaloida dapat dilakukan berdasarka beberapa cara yaitu :
1.    Berdasarkan jenis cicin heterosiklik nitrogen yang merupakan baian dari struktur molekul. Berdasarkan hal tersebut, alkaloid dibedakan atas beberapa jenis seperti :


Gambar. Struktur Piridina

·       Golongan Pyrrolidine: hygrine, cuscohygrine, nikotina
    
gambar. Struktur Pyrrolidine

·       Golongan Isokuinolina: alkaloid-alkaloid opium (papaverine, narcotine, narceine), sanguinarine, hydrastine, berberine, emetine, berbamine, oxyacanthine. 
  
   
              Gambar. Struktur Kuinolina

 ·       Golongan Indola:
o   Ergolines (alkaloid-alkaloid dari ergot ): ergine, ergotamine, lysergic acid
o   Yohimbans: reserpine, yohimbine
o   Alkaloid Vinca: vinblastine, vincristine
o   Alkaloid Kratom (Mitragyna speciosa): mitragynine, 7-hydroxymitragynine

Gambar. Struktur Indol
2.    Berdasarkan jenis tumbuhan dari mana alkaloida ditemukan.
3.    Berdasarkan asal-usul biogenetic. Berdasarkna hal ini alkaloida dapat dibedakan atas tiga jenis utama yaitu :
a.    Alkaloida alisiklik yang berasal dari asam-asam amino ornitin dan lisin.
b.    Alkaloida aromatik jenis fenilalanin yang berasal dari fenilalanin, tirosin dan 3,4 – dihidrofenilalanin.
c.    Alkaloida aromatik jenis indol yang berasal dari triptopan.

Sistem klasifikasi yang paling banyak diterima adalah menurut Hegnauer, dimana alkaloida dikelompokkan atas :
1.    Alkaloida sesungguhnya, alkaloida ini merupakan racun, senyawa tersebut menunjukkan aktivitas fisiologis yang luas, hamper tanpa kecuali bersifat basa. Umumnya mengandung nitrogen dalam cicin heterosiklik, diturunkan dari asam amino, biasanya terdapat dalam tanaman sebagai garam asam organik. Beberapa pengecualian terhadap aturan tersebut adalah kolkhisin dan asam aristolkhoat yang bersifat bukan basa dan tidak memiliki cicin heterosiklik dan alkaloida quartener yang bersifat agak asam daripada bersifat basa.
2.    Protoalkaloida, merupakan amin yang relative sederhana dimana nitrogen asam amino tidak terdapat dalam cicin heterosiklik. Protoalkaloida diperoleh berdasarkan biosintesa dari asam amino yang bersifat basa. Pengeertian amin biologis sering digunakan untuk kelompok ini.
3.    Pseudoalkaloida, tidak diturunkan dari  precursor asam amino. Senyawa ini biasanya bersifat basa. Ada dua seri alkaloida yang penting dalam kelompok ini yaitu alkaloida steroidal dan purin.

C.  Sifat  Senyawa Alkaloid
Kebanyakan alkaloida berupa padatan Kristal dengan titik lebur yang tertentu atau mempunyai kisaran dekomposisinya. Dapat juga berbentuk amorf dan beberapa seperti nikotin dan konini berupa cairan.
Kebanyakan alkaloida tak berwarna, tetapi beberapa senyawa kompleks spesies aromatik berwarna. Pada umumnya basa bebas alkaloida hanya larut dalam pelarut organik meskipun beberapa pseudoalakaloid dan protoalkaloida larut dalam air. Garam alkaloida dan alkaloida quaterner sangat larut dalam air.
Alkaloida bersifat basa yang tergantung pada pasangan electron pada nitrogen. Jika gugus fungsional yang berdekatan dengan nitrogen bersifat melepaskan elektron maka ketersediaan electron pada nitrogen naik dan senyawa lebih bersifat menarik elektron maka ketersediaan pasangan electron berkurang dan pengaruh yang ditimbulkan alkaloida dapat bersifat netral atau bahkan bersifat sedikit asam.
Kebasaan alkaloida menyebabkan senyawa tersebut sangat mudah mengalami dekomposisi terutama oleh panas dan sinar dengan adanya oksigen. Hasil reaksi ini sering berupa N-oksida. Dekomposisi olakloida selama atau setelah isolasi dapat menimbulkan berbagai persoalan jika penyimpanan berlangsung dalam waktu lama. Pembentukan garam dengan senyawa organik atau anorganik sering mencegah dekomposisi.

D.  Reaksi Senyawa Fenolik
Reaksi umum untuk alkaloid
1. Reaksi pengendapan untuk alkaloid
Reaksi Mayer : HgI2
·       Cara : zat + pereaksi Mayer timbul endapan kuning atau larutan kuning bening → + alakohol endapannya larut. Reaksi dilakukan di objek glass lalu Kristal dapat dilihat di mikroskop. Jika dilakukan di tabung reaksi lalu dipindahkan, Kristal dapat rusak. Tidak semua alkaloid mengendap dengan reaksi mayer. Pengendapan yang terjadi akibat reaksi mayer bergantung pada rumus bangun alkoloidnya.

Reaksi Bouchardat
·       Cara : sampel zat + pereaksi Bouchardat  → coklat merah, + alkohol  → endapan larut.

2. Reaksi warna
  • Dengan asam kuat : H2SO4 pekat dan HNO3 pekat (umumnya menghasilkan warna kuning atau merah)
  • Pereaksi Marquis
    • Zat + 4 tetes formalin + 1 ml H2SO4 pekat (melalui dinding tabung, pelan-pelan)  → warna.
    • Pereaksi Forhde : larutan 1% NH4 molibdat dalam H2SO4 pekat
§   Zat + pereaksi Forhde  → kuning kecoklatan
§   Zat + diazo A (4 bagian) + diazo B (1 bagian) + NaOH sampai alkalis  → warna merah intensif.
§   Reaksi Nelzer Larutan zat dalam alkohol absolut + 1 tetes CuSO4 dan CS2 à warna coklat seperti minyak.
§   Reaksi Mandelin : zat + H2SO4 + FeCl3àwarna
§   Reaksi Roux: 1 tts NaOH + 1 tts KMnO4 + 20 tts Na nitroprusid à kocok à larutan dan endapan, larutan diambil.
§   Reaksi Serulas & Lefort : larutan zat dalam H2SO4 encer + KI + CHCl3 à dikocok; lapisan CHCl3 akan berwarna.
§   Reaksi Huseman : zat + H2SO4 pekat à dipanaskan di atas api sehingga dihasilkan apomorfin + HNO3 65% + KNO3 padat à warna.
§   Reaksi Bosman: larutan zat dalam H2SO4 encer  + KMNO4 à dikocok dengan CHCl3; lapisan CHCl3 akan berwarna violet kemudian terbentuk endapan coklat.
§   Reaksi Zwikker : Zat +1 ml Pyridin 10% + CuSO4 à batang panjang tidak berwarna, Kristal tidak spesifik dan dibuat di objek glass.
§   Reaksi Mandelin  amonium vanadat  ½ % dalam air + H2SO4 pekat.
§   Reaksi Murexide : Zat + 1 tetes H2O2  3 % atau KClO3  padat +    1 tetes HCl 25%, panaskan di water bath hingga kering à agak Jingga; + NH4OH à warna Ungu
§   Reaksi Parri : Zat + Co(NO3)2, lalu + uap NH4OH warna ungu.
        • Reaksi Vitally : zat + HNO3 berasap, diuapkan di atas water bath sampai kering, + spir/alkali ungu, tahan dalam aseton
          • Apomorfin : merah
          • Strychnine : merah ungu
          • Veratrin : coklat jingga
§   Reaksi Lieberrman: H2SO4 pekat + HNO3 pekat
§   Reaksi Sanchez : zat + p-nitrodiabendazol (p-nitoanilin +NaNO2 + NaOH)à ungu à jingga.
§   Reaksi Pesez : zat + H2SO4 + lar. KBr, panaskan di atas water bath à hijau, ditarik dengan CHCl3 à biru hijau.
§   Reaksi Thalleiochin : larutan zat dalam asam asetat encer + 1 tetes aqua brom + NH4OH berlebihàhijau zamrud + kloroformàdifloresensi
§   Reaksi Erytrochin : larutan zat dalam HCl encer + aqua brom (hingga kuning) + kalium ferrocyanida + CHCl3 + NH4OH, kocok homogen → lapisan CHCl3 berwarna merah.
§   Reaksi Sanchez. (reagen : larutan jenuh p-nitronilin dalam 1% H2SO4 + NaNO2). Zat + H2SO4 75 % + 1 tetes reagen + NaOH → ungu tua, asamkan dengan H2SO4 → jingga.
§   Reaksi Feigel : 5 tetes H2SO4 pkt + sedikit yohimbin ad larut + kristal khloral hidrat panaskan di WB → merah biru stabil, + air → warna hilang.
§   Reaksi esterifikasi :  Zat + alkohol + H2SO4 conc. Panaskan → bau khas.
§   Reaksi isonitril : Zat + spiritus + KOH → panaskan → ditambah CHCl3 → panaskan lagi → bau iso nitril (segera diasamkan karena bau beracun/busuk)
§   Reaksi Runge : Dipanaskan dengan HCl 25% → dinginkan → ditambah NaOH ad basa lemah → berwarna ungu kotor
§   Reaksi Indophenol:  Panaskan dengan HCl → dinginkan diencerkan dengan air + phenol + kaporit → nampak ungu kotor → ditambah NH4OH berlebih → berwarna biru + HNO3 à tidak berwarna kuning.
§   Reaksi Ehrlich : Zat padat + pereaksi p-DAB HCl → berwarna kuning kenari
§   Reaksi Wassicky : zat + p-DAB +H2SO4 pekat à merah ungu
§   Reaksi korek api : zat + HCl lalu batang korek api dicelupkan à jingga/kuning.
3. Reaksi Kristal:
  1. Reaksi Kristal dragendorf
Pada objek glass, zat +HCl aduk, lalu teteskan dragendorf di pinggirnya dan jangan dikocok, diamkan 1 menit  Kristal dragendorf

2.                 2.  Reaksi Fe-complex & Cu-complex:
Pada objek glass, gas ditetesi dengan Fe-compleks dan Cu-complex lalu tutup dengan cover glass  panaskan sebentar, lalu lihat Kristal yang terbentuk.
1.    Pada objek glass, zat + asam lalu ditaburkan serbuk sublimat dengan spatel, sedikit saja digoyangkan di atasnya à Kristal terlihat.
2.    Reaksi Iodoform : zat ditetesi NaOH sampai alkali + sol. Iodii lalu dipanaskan hingga berwarna kuning (terbentuk iodoform), lalu lihat Kristal bunga sakura di mikroskop.
3.    Reaksi Herapatiet. (reagen : air + spirtus + asam cuka biang + sedikit H2SO4 dan aqua iod sampai agak kuning pada objek glass). Zat + 1 tetes reagen → kristal lempeng (coklat/violet)

E.  Identifikasi Senyawa Alkaloid
1. Alkaloid Derivat Fenil Alanin
1.1 Alkaloid Amin
1.1.1 Efedrin HCl
Asal (efedrin)  : Ephedra vulgaris
Organoleptis    : serbuk putih halus, tidak berbau, rasa pahit
Kelarutan        : larut dalam lebih kurang 4 bagian air
Reaksi Identifikasi:
1. Larutan zat dalam air + PbSO4 + NaOH  violet.
2. Larutan zat dalam air +NaOH 0,1 N + 3 ml CCl4  dikocok , dibiarkan  pisahkan lapisan organik + sedikit tembaga à kocok à keruh lalu terbentuk endapan.
3. Reaksi oksidasi oleh KMnO4  bau benzaldehid.
4. Reaksi iodoform (+)
5. Reaksi Nelzer: Larutan zat dalam alkohol absolut + 1 tetes CuSO4 dan CS2  coklat minyak.
6. Zat + sulfanilat + NaOH  merah.
7. Larutan zat dalam air + HCl, + H2O2 + NaCl + 6 tetes NaOH  merah violet.
8. Larutan zat dalam air + AgNO3  endapan (AgCl), dicuci dengan air, + NH4OH  endapan akan larut kembali.
1.2 Alkaloid Benzil Isokuinolon
1.2.1 Morfin
Asal: Papaver somniferum
Sinonim           : Dionin
Organoleptis    : kristal putih
Kelarutan        : larut dalam 12 bagian air
Divisio             : Spermatophyta

Subdivisio       : Angiospermae
Classis             : Dicotyledoneae
Ordo                : Piperales
Familia            : Piperaceae
Genus              : Piper
Species            : Piper nigrum L.

Reaksi Identifikasi:
1. Reaksi KING, SANCHEZ, dan FESEZ (+)
2. Zat + H2SO4 + FeCl3  dipanaskan dalam air mendidih  berwrna biru + HNO3  berwarna merah/coklat merah tua.
1.              Reaksi iodoform (+)
2.              Reaksi FROHDE: kuning hijau.
3.              Reaksi MANDELIN: kuning hijau.
4.              Reaksi MARQUIS: ungu dalam waktu lama.
5.              Larutan zat dalam HCl + I2 à endapan yang larut dalam spiritus. 

F.   Kegunaan Senyawa Alkaloid Dalam Kehidupan Sehari-hari
Berikut adalah beberapa contoh senyawa alkaloid yang telah umum dikenal dalam bidang farmakologi :
Senyawa Alkaloid
(Nama Trivial)
Aktivitas Biologi
Nikotin
Stimulan pada syaraf otonom
Morfin
Analgesik
Kodein
Analgesik, obat batuk
Atropin
Obat tetes mata
Skopolamin
Sedatif menjelang operasi
Kokain
Analgesik
Piperin
Antifeedant (bioinsektisida)
Quinin
Obat malaria
Vinkristin
Obat kanker
Ergotamin
Analgesik pada migrain
Reserpin
Pengobatan simptomatis disfungsi ereksi
Mitraginin
Analgesik dan antitusif
Vinblastin
Anti neoplastik, obat kanker
Saponin
Antibakteri


Description: Image result for lada hitam
Sokletasi adalah suatu metode / proses pemisahan suatu komponen yang terdapat dalam zat padat dengan cara penyaringan berulang ulang dengan menggunakan pelarut tertentu, sehingga semua komponen yang diinginkan akan terisolasi.
Pengambilan suatu senyawa organik dari suatu bahan alam padat disebut ekstraksi. Jika senyawa organik yang terdapat dalam bahan padat tersebut dalam jumlah kecil, maka teknik isolasi yang digunakan tidak dapat secara maserasi, melainkan dengan teknik lain dimana pelarut yang digunakan harus selalu dalam keadaan panas sehingga diharapkan dapat mengisolasi senyawa organik itu lebih efesien. Isolasi semacam itu disebut sokletasi.
Adapun prinsip sokletasi ini yaitu : Penyaringan yang berulang ulang sehingga hasil yang didapat sempurna dan pelarut yang digunakan relatif sedikit. Bila penyaringan ini telah selesai, maka pelarutnya diuapkan kembali dan sisanya adalah zat yang tersari. Metode sokletasi menggunakan suatu pelarut yang mudah menguap dan dapat melarutkan senyawa organik yang terdapat pada bahan tersebut, tapi tidak melarutkan zat padat yang tidak diinginkan
Metoda sokletasi seakan merupakan penggabungan antara metoda maserasi dan perkolasi. Jika pada metoda pemisahan minyak astiri ( distilasi uap ), tidak dapat digunakan dengan baik karena persentase senyawa yang akan digunakan atau yang akan diisolasi cukup kecil atau tidak didapatkan pelarut yang diinginkan untuk maserasi ataupun perkolasi ini, maka cara yang terbaik yang didapatkan untuk pemisahan ini adalah sokletasi
Sokletasi digunakan pada pelarut organik tertentu. Dengan cara pemanasan, sehingga uap yang timbul setelah dingin secara kontunyu akan membasahi sampel, secara teratur pelarut tersebut dimasukkan kembali kedalam labu dengan membawa senyawa kimia yang akan diisolasi tersebut. Pelarut yang telah membawa senyawa kimia pada labu distilasi yang diuapkan dengan rotary evaporator sehingga pelarut tersebut dapat diangkat lagi bila suatu campuran organik berbentuk cair atau padat ditemui pada suatu zat padat, maka dapat diekstrak dengan menggunakan pelarut yang diinginkan.
            Metoda sokletasi seakan merupakan penggabungan antara metoda maserasi dan perkolasi. Jika pada metoda pemisahan minyak astiri ( distilasi uap ), tidak dapat digunakan dengan baik karena persentase senyawa yang akan digunakan atau yang akan diisolasi cukup kecil atau tidak didapatkan pelarut yang diinginkan untuk maserasi ataupun perkolasi ini, maka cara yang terbaik yang didapatkan untuk pemisahan ini adalah sokletasi.
B. Keunggulan dan Kelemahan Sokletasi
Keunggulan sokletasi :
1. Sampel diekstraksi dengan sempurna karena dilakukan berulang ulang.
2. Jumlah pelarut yang digunakan sedikit.
3. Proses sokletasi berlangsung cepat.
4. Jumlah sampel yang diperlukan sedikit.
5. Pelarut organik dapat mengambil senyawa organik berulang kali.
           

Kelemahan sokletasi :
1. Tidak baik dipakai untuk mengekstraksi bahan bahan tumbuhan yang mudah rusak atau senyawa senyawa yang tidak tahan panas karena akan terjadi penguraian.
2. Harus dilakukan identifikasi setelah penyarian, dengan menggunakan pereaksi meyer, Na, wagner, dan reagen reagen lainnya.
3. Pelarut yang digunakan mempunyai titik didih rendah, sehingga mudah menguap.
C. Syarat Pelarut yang digunakan
Syarat syarat pelarut yang digunakan dalam proses sokletasi :
1. Pelarut yang mudah menguap Ex : heksan, eter, petroleum eter, metil klorida dan alkohol
2. Titik didih pelarut rendah.
3. Pelarut tidak melarutkan senyawa yang diinginkan.
4. Pelarut terbaik untuk bahan yang akan diekstraksi.
5. Pelarut tersebut akan terpisah dengan cepat setelah pengocokan.
6. Sifat sesuai dengan senyawa yang akan diisolasi, polar atau nonpolar.
Ekstraksi dilakukan dengan menggunakan secara berurutan pelarut – pelarut organik dengan kepolaran yang semakin menigkat. Dimulai dengan pelarut heksana, eter, petroleum eter, atau kloroform untuk memisahkan senyawa – senyawa trepenoid dan lipid – lipid, kemudian dilanjutkan dengan alkohol dan etil asetat untuk memisahkan senyawa – senyawa yang lebih polar. Walaupun demikian, cara ini seringkali tidak. menghasilkan pemisahan yang sempurna dari senyawa – senyawa yang diekstraksi.
Cara menghentikan sokletasi adalah dengan menghentikan pemanasan yang sedang berlangsung. Sebagai catatan, sampel yang digunakan dalam sokletasi harus dihindarkan dari sinar matahari langsung. Jika sampai terkena sinar matahari, senyawa dalam sampel akan berfotosintesis hingga terjadi penguraian atau dekomposisi. Hal ini akan menimbulkan senyawa baru yang disebut senyawa artefak, hingga dikatakan sampel tidak alami lagi.
Alat sokletasi tidak boleh lebih rendah dari pipa kapiler, karena ada kemungkinan saluran pipa dasar akan tersumbat. Juga
Dibanding dengan cara terdahulu ( destilasi ), maka metoda sokletasi ini lebih efisien, karena:
1. Pelarut organik dapat menarik senyawa organik dalam bahan alam secara berulang kali.
2. Waktu yang digunakan lebih efisien.
3. Pelarut lebih sedikit dibandingkan dengan metoda maserasi atau perkolasi.
Sokletasi dihentikan apabila :
1. Pelarut yang digunakan tidak berwarna lagi.
2. Sampel yang diletakkan diatas kaca arloji tidak menimbulkan bercak lagi.
3. Hasil sokletasi di uji dengan pelarut tidak mengalami perubahan yang spesifik.

D. Prosedur Kerja Maserasi dengan Metode Sokletasi
Cara kerja sokletasi adalah sebagai berikut :
Serbuk kering yang akan diekstraksi berada di dalam kantong sampel yang diletakkan pada alat ekstraksi (tabung soklet). Tabung soklet yang berisi kantong sampel diletakkan diantara labu destilasi dan pendingin, disebelah bawah dipasang pemanas.
Setelah pelarut ditambahkan melalui bagian atas alat soklet dan pemanas dihidupkan, pelarut dalam labu didih menguap dan mencapai pendingin, berkondensasi dan menetes ke atas kantong sampel sampai mencapai tinggi tertentu/maksimal (sama tinggi dengan pipa kapiler), pelarut beserta zat yang tersari didalamnya akan turun ke labu didih melalui pipa kapiler.
Pelarut beserta zat yang tersari pada labu didih akan menguap lagi dan peristiwa ini akan terjadi berulang-ulang sampai seluruh zat yang ada dalam sampel tersari sempurna (ditandai dengan pelarut yang turun melewati pipa kapiler tidak berwarna dan dapat diperiksa dengan pereaksi yang cocok).
                Refluks adalah salah satu metode dalam ilmu kimia untuk mensintesis suatu senyawa, baik organik maupun anorganik. Umumnya digunakan untuk mensistesis senyawa-senyawa yang mudah menguapa atau volatile. Pada kondisi ini jika dilakukan pemanasan biasa maka pelarut akan menguap sebelum reaksi berjalan sampai selesai. Prinsip dari metode refluks adalah pelarut volatil yang digunakan akan menguap pada suhu tinggi, namun akan didinginkan dengan kondensor sehingga pelarut yang tadinya dalam bentuk uap akan mengembun pada kondensor dan turun lagi ke dalam wadah reaksi sehingga pelarut akan tetap ada selama reaksi berlangsung. Sedangkan aliran gas N2 diberikan agar tidak ada uap air atau gas oksigen yang masuk terutama pada senyawa organologam untuk sintesis senyawa anorganik karena sifatnya reaktif.
http://www.Al-ChemistUngu.blogspot.com/refluks.html



Prosedur dari sintesis dengan metode refluks adalah
     Semua reaktan atau bahannya dimasukkan dalam labu bundar leher tiga.
     Kemudian dimasukkan batang magnet stirer setelah kondensor pendingin air terpasang
     Campuran diaduk dan direfluks selama waktu tertentu sesuai dengan reaksinya.
     Pengaturan suhu dilakukan pada penangas air, minyak atau pasir sesuai dengan kebutuhan reaksi.
     Pelarut akan mengekstraksi dengan panas, terus akan menguap sebagai senyawa murni dan kemudian terdinginkan dalam kondensor, turun lagi ke wadah, mengekstraksi lagi dan begitu terus.
     Demikian seterusnya berlangsung secara berkesinambungan sampai penyaringan sempurna
     Penggantian pelarut dilakukan sebanyak 3 kali setiap 3-4 jam.
     Filtrat yang diperoleh dikumpulkan dan dipekatkan. K
     Gas N2 dimasukkan pada salah satu leher dari labu bundar.

Dilakukan dengan menggunakan alat destilasi, dengan merendam simplisia dengan pelarut/solven dan memanaskannya hingga suhu tertentu. Pelarut yang menguap sebagian akan mengembung kembali kemudian masuk ke dalam campuran simplisia kembali, dan sebagian ada yang menguap.
2.3. Keuntungan dan Kerugian Metode Refluks

Keuntungan dari metode refluks adalah:
     Digunakan untuk mengekstraksi sampel-sampel yang mempunyai tekstur kasar, dan
     Tahan pemanasan langsung.
Kerugian dari metode refluks adalah:
     Membutuhkan volume total pelarut yang besar,dan
     Sejumlah manipulasi dari operator.
Maserasi adalah salah satu jenis metoda ekstraksi dengan sistem tanpa pemanasan atau dikenal dengan istilah ekstraksi dingin, jadi pada metoda ini pelarut dan sampel tidak mengalami pemanasan sama sekali. Sehingga maserasi merupakan teknik ekstraksi yang dapat digunakan untuk senyawa yang tidak tahan panas ataupun tahan panas.Namun biasanya maserasi digunakan untuk mengekstrak senyawa yang tidak tahan panas (termolabil) atau senyawa yang belum diketahui sifatnya. Karena metoda ini membutuhkan pelarut yang banyak dan waktu yang lama. Secara sederhana, maserasi dapat kita sebut metoda “perendaman” karena memang proses ekstraksi dilakukan dengan hanya merendam sample tanpa mengalami proses lain kecuali pengocokan (bila diperlukan). Prinsip penarikan (ekstraksi) senyawa dari sample adalah dengan adanya gerak kinetik dari pelarut, dimana pelarut akan selalu bergerak pada suhu kamar walaupun tanpa pengocokan. Namun untuk mempercepat proses biasanya dilakukan pengocokan secara berkala.
B.     Kelebihan Maserasi
Seperti dijelaskan diatas maserasi dapat digunakan untuk jenis senyawa tahan panas ataupun tidak tahan panas. Selain itu tidak diperlukan alat yang spesifik, dapat digunakan apa saja untuk proses perendaman.
C.     Kekurangan Maserasi
Maserasi membutuhkan waktu yang lama, biasanya paling cepat 3x24jam, disamping itu membutuhkan pelarut dalam jumlah yang banyak.
Untuk menjelaskan kelebihan dan kekurangan mari kita bahas secara prosedur.
Gambar disamping menunjukkan proses maserasi, dimana sample dimasukkan ke dalam bejana (maserator) kemudian direndam dengan pelarut sampai terendam sempurna dan tambahkan sekitar 1-2cm pelarut di atas permukaan sample, kemudian tutup bagian atas untuk mencegah masuknya pengotor dan penguapan pelarut, namun berikan sedikit lobang untuk mencegah terjadinya letupan akibat penguapan pelarut. Perendaman dilakukan selama kurun waktu tertentu, misalnya dilakukan selama 24 jam dengan diberikan pengadukan setiap 1-2 jam (kalau malem biarkan saja tidak perlu di aduk), proses pengadukan bukan keharusan. Setelah 24 jam ganti pelarut dengan pelarut baru dan selanjutnya perlakukan sama dengan yang pertama. Penggantian pelarut dilakukan untuk mempercepat proses ekstraksi, karena pelarut pertama kemungkinan sudah jenuh oleh senyawa sehingga tidak dapat melarutkan kembali senyawa yang diharapkan, dan waktu pergantian tergantung kebutuhan tidak harus 24 jam. 
Maserasi dapat dilakukan modifikasi misalnya:
1.      Digesti
Adalah cara maserasi dengan menggunakan pemanasan lemah, yaitu pada suhu 40˚ C - 50˚ C. Cara maserasi ini hanya dapat dilakukan untuk simplisia yang zat aktifnya tahan terhadap pemanasan.
Dengan pemanasan akan diperoleh keuntungan antara lain :
a.       Kekentalan pelarut berkurang, yang dapat mengakibatkan berkurangnya lapisan-lapisan batas.
b.      Daya melarutkan cairan penyari akn meningkat, sehingga pemanasan tersebut mempunyai pengaruh yang sama dengan pengadukan.
c.       Koefisien difusi berbanding lurus dengan suhu absolut dan berbanding terbalik dengan kekentalan, hingga kenaikan suhu akan berpengaruh pada kecepatan difusi. Umumnya kelarutan zat aktif akan meningkat apabila suhu dinaikkan.
Jika cairan penyari mudah menguap pada suhu yang digunakan, maka perlu dilengkapi dengan pendingin balik, sehingga cairan penyari yang menguap akan kembali ke dalam bajana.
2.      Maserasi dengan mesin pengaduk.
Pengaduk berputar terus-menerus, waktu proses masersi dapat dipersingkat menjadi 6-24 jam.
3.      Remaserasi
Cairan penyari dibagi 2. Seluruh serbuk simplisia dimaserasi dengan cairan penyari pertama, sesudah dienap tuangkan dan diperas, ampas dimaserasi lagi dengan cairan penyari yang kedua.
4.      Maserasi melingkar.
Maserasi dapat diperbaiki dengan mengusahakan agar cairan penyari selalu bergerak dan menyebar. Dengan cara ini penyari selalu mengalir kembali secara berkesinambungan melalui serbuk simplisia dan melarutkan zat aktifnya.
Keuntungan cara ini :
a.      Aliran cairan penyari mengurangi lapisan batas
b.      Cairan penyari akan didistribusikan secara seragam sehingga akan memperkecil kepekaan setempat
c.       Waktu yang diperlukan lebih pendek

5.      Maserasi melingkar bertingkat
Pada maserasi melingkar penyarian tidak dapat dilaksanakan secara sempurna, karena pemindahan massa akan berhenti bila keseeimbangan telah terjadi. Masalah  ini dapat diatasi dengan maserasi melingkar bertingkat (MMB).
Cairan-cairan penyari yang cocok untuk metode maserasi
Pelarut merupakan senyawa yang bisa melarutkan zat sehingga bisa menjadi sebuah larutan yang bisa diambil sarinya.Pelarut yang digunakan dalam proses ekstraksi antara lain sebagai berikut:
a. Pelarut polar : Pelarut yang larut dalam air
            Untuk melarutkan garamnya alkaloid,glikosida,dan bahan penyamak
n-Butanol
CH3-CH2-CH2-CH2-OH 118 °C 18 0.810 g/ml
Isopropanol (IPA) CH3-CH(-OH)-CH3 82 °C 18 0.785 g/ml
n-Propanol
CH3-CH2-CH2-OH 97 °C 20 0.803 g/ml
Etanol
CH3-CH2-OH 79 °C 30 0.789 g/ml
Metanol
CH3-OH 65 °C 33 0.791 g/ml
Asam format
H-C(=O)OH 100 °C 58 1.21 g/ml
Air
H-O-H 100 °C 80 1.000 g/ml

b. Pelarut non polar : Pelarut yang tidak larut dalam air
Heksana
CH3-CH2-CH2-CH2-CH2-CH3 69 °C 2.0 0.655 g/ml
Pemilihan pelarut atau cairan penyari harus mempertimbangkan banyak faktor. Cairan penyari yang baik harus memenuhi criteria berikut ini:
a.Murah dan mudah diperoleh
b.Stabil secara fisika dan kimia
c.Bereaksi netral
d.Tidak mudah menguap dan tidak mudah terbakar
e.Selektif yaitu hanya menarik zat berkhasiat yang dikehendaki
f.Tidak mempengaruhi zat berkhasiat
            Yang harus diperhatikan dalam pemeriksaan mutu simplisia adalah sebagai berikut :
a. Simplisis harus memenuhi persyaratan umum edisi terakhir dari buku-buku acuan yang dikeluarkan oleh Departemen Kesehatan RI
b. Terdapat simplisia pembanding yang setiap periode harus diperbaharui.
c. Dilakukan pemeriksaan mutu fisi secara tepat.
d. Dilakukan pemeriksaan secara lengkap seperti pemeriksaan organolepti, makrokospis, mikrokospis, pemeriksaan fisika, kimiawi, kromatografi.
6. Parameter standarisasi
Parameter standarisasi antara lain:
• Organoleptik
Pemeriksaan meliputi warna, bau, dan rasa.
• Makrokospis
Pemeriksaan dengan dilihat secara langsung, dapat juga dengan bantuan kaca pembesar
• Mikrokosis
Pemeriksaan dengan melihat jaringan sel simplisia dibawah mikroskop
• Fluoresensi
Uji ini dapat dilakukan terhadap ekstrak, atau larutan yang dibuat dari simplisia
• Kelarutan
Dilakukan pada simplisia yang berupa eksudat tanaman
• Reaksi warna , pengendapan, dan reaksi lain
Pada reaksi warna dapat dilakukan pada simplisia yang telah diserbuk
Pada reaksi pengendapan dilakukan pada ekstrak larutan simplisia yang jernih.
• Kromatografi
Cara ini mempunyai kepekaan yang tinggi, cepat, sederhana dan murah.
• Penetapan kadar
Syarat untuk dapat diterapkannya pengujian yang berupa zat ini adalah telah diketahui secara pasti kadar minimal zat berkhasiat yang harus dikandung oleh simplisia
• Cemaran mikroba dan aflatoksin
Seperti Aspergillus flavus, merupakan mikroba jamur yang tidak berbahaya, tetapi metabolit aflatoksinnya menyebabkan keracunan.
• Cemaran logam berat
Seperti cemaran hydrogen sulfida tidak boleh melebihi batas logam berat pada monografi yang dinyatakan sebagai timbale.
Perkolasi adalah proses penyarian simplisia dengan jalan melewatkan pelarut yang sesuai secara lambat pada simplisia dalam suatu percolator. Perkolasi bertujuan supaya zat berkhasiat tertarik seluruhnya dan biasanya dilakukan untuk zat berkhasiat yang tahan ataupun tidak tahan pemanasan.
Prinsip perkolasi adalah sebagai berikut: serbuk simplisia ditempatkan dalam suatu bejana silinder, yang bagian bawahnya diberi sekat berpori. Cairan penyari dialirkan dari atas ke bawah melalui serbuk tersebut, cairan penyari akan melarutkan zat aktif sel-sel yang dilalui sampai mencapai keadaan jenuh. Gerak kebawah disebabkan oleh kekuatan gaya beratnya sendiri dan cairan diatasnya, dikurangi dengan daya kapiler yang cenderung untuk menahan. Kekuatan yang berperan pada perkolasi antara lain: gaya berat, kekentalan, daya larut, tegangan permukaan, difusi, osmosa, adesi, daya kapiler dan daya geseran (friksi).
Secara umum proses perkolasi ini dilakukan pada temperatur ruang. Sedangkan parameter berhentinya penambahan pelarut adalah perkolat sudah tidak mengandung senyawa aktif lagi. Pengamatan secara fisik pada ekstraksi bahan alam terlihat pada tetesan perkolat yang sudah tidak berwarna.
Cara perkolasi lebih baik dibandingkan dengan cara maserasi karena:
a.       Aliran cairan penyari menyebabkan adanya pergantian larutan yang terjadi dengan larutan yang konsentrasinya lebih rendah, sehingga meningkatkan derajat perbedaan konsentrasi.
b.      Ruangan diantara serbuk-serbuk simplisia membentuk saluran tempat mengalir cairan penyari.karena kecilnya saluran kapiler tersebut,maka kecepatan pelarut cukup untuk mengurangi lapisan batas,sehingga dapat meningkatkan perbedaan konsentrasi.

Perkolasi Bertingkat
Dalam proses perkolasi biasa, perkolat yang dihasilkan tidak dalam kadar yang maksimal. Selama cairan penyari melakukan penyarian serbuk simplisia, maka terjadi aliran melalui lapisan serbuk dari atas sampai ke bawah disertai pelarutan zat aktifnya. Proses poenyaringan tersebut akan menghasilkan perkolat yang pekat pada tetesan pertama dan terakhir akan diperoleh perkolat yang encer.
Untuk memperbaiki cara perkolasi tersebut dialkukan cara perkolasi bertingkat. Serbuk simplisia yang hampir tersari sempurna sebelum dibuang, disari dengan cairan penyari yang baru. Hal ini diharapkan agar serbuk simplisia tersebut dapat tersari sempurna. Sebaliknya serbuk simplisia yang baru disari dengan perkolat yang hampir jenuh, dengan demikian akan diperoleh perkolat akhir yang jernih. Perkolat dipisahkan dan dipekatkan.
Cara ini cocok bila digunakan untuk perusahaan obat tradisional, termasuk perusahaan yang memproduksi sediaan galenik. Agar dioperoleh cara yang tepat, perlu dilakukan percobaan pendahuluan. Dengan percobaan tersebut dapat ditetapkan :
1.Jumlah percolator yang diperlukan
2.Bobot serbuk simplisia untuk tiap kali perkolasi
3.Jenis cairan penyari
4.Jumlah cairan penyari untuk tiap kali perkolasi
5.Besarnya tetesan dan lain-lain.
Percolator yang digunakan untuk cara perkolasi ini agak berlainan dengan percolator biasa. Percolator ini harus dapat diatur, sehingga:
1.Perkolat dari suatu percolator dapat dialirkan ke percolator lainnya
2.AmpAs dengan mudah dapat dikeluarkan.
Percolator diatur dalam suatu deretan dan tiap percolator berlaku sebagai percolator Description: See the source imagepertama.
Description: See the source imageDescription: See the source imageDescription: See the source imageDescription: See the source imageDescription: See the source image

Komentar

Postingan populer dari blog ini

preformulasi sediaan teknologi sediaan steril

BAB I PENDAHULUAN I.I TINJAUAN PUSTAKA             Preformulasi terdiri dari kata pre yang artinya sebelum dan formulasi yang artinya perumusan atau penyusunan. Dibidang farmasi preformulasi dapat diartikan sebagai langkah awal yang dilakukan ketika akan membuat formula suatu obat.                preformulasi meliputi pengkajian tentang karakteristik/sifat-sifat dari bahan obat dan bahan tambahan obat yang akan diformulasi.             I.II Tujuan Preformulasi Membuat formula yang tepat sehingga menghasilkan produk akhir berupa sediaan farmasi yang stabil, berkhasiat, aman dan nyaman ketika digunakan. Pertimbangan Umum Preformulasi Sebelum membuat formula sediaan obat, beberapa hal yang harus dipertimbangkan yaitu : Bentuk sediaan yang akan dibuat Bentuk sediaan farmasi yaitu bentuk padat (puyer, tablet, kapsu...

sediaan steril

BAB I PENDAHULUAN 1.1   Latar Belakang Sediaan parental yang diberikan secara penyuntikan intravena, subkutan, dan intramuscular merupakan rute pemberian obat yang kritis jika dibandingkan dengan pemberian obat-obatan secara oral. Semakin meningkatnya perkembangan ilmu bioteknologi telah meningkat pula jumlah yang diproduksi secara bioteknologi seperti obat peptide dan atau produk gen. pada abad mendatang (sekarang sudah mulai) beberapa obat peptide dan obat lainnya akan dihasilkan menurut prinsip bioteknologi. Penyuntikan yang diperlukan, baik untuk respon terapeutik yang cepat maupun  untuk obat yang tidak tersedia untuk rute non-injeksi. Penggunaan awal sediaan parental menimbulkan banyak masalah dan berkembang relative lambat. Padahal Pasteur dan Lister telah mengetahui pentingnya melakukan sterilisasi untuk mengeliminasi mikroorganisme pathogen sejak tahun 1860-an. Tetapi, teknologi sterilisasi tidak berkembang secara signifikan. Sebagai contoh, autoklaf sudah...